An Optimized Protocol for Electrophoretic Mobility Shift Assay Using Infrared Fluorescent Dye-labeled Oligonucleotides.
نویسندگان
چکیده
Electrophoretic Mobility Shift Assays (EMSA) are an instrumental tool to characterize the interactions between proteins and their target DNA sequences. Radioactivity has been the predominant method of DNA labeling in EMSAs. However, recent advances in fluorescent dyes and scanning methods have prompted the use of fluorescent tagging of DNA as an alternative to radioactivity for the advantages of easy handling, saving time, reducing cost, and improving safety. We have recently used fluorescent EMSA (fEMSA) to successfully address an important biological question. Our fEMSA analysis provides mechanistic insight into the effect of a missense mutation, G73E, in the highly conserved HMG transcription factor SOX-2 on olfactory neuron type diversification. We found that mutant SOX-2G73E protein alters specific DNA binding activity, thereby causing olfactory neuron identity transformation. Here, we present an optimized and cost-effective step-by-step protocol for fEMSA using infrared fluorescent dye-labeled oligonucleotides containing the LIM-4/SOX-2 adjacent target sites and purified SOX-2 proteins (WT and mutant SOX-2G73E proteins) as a biological example.
منابع مشابه
Electrophoretic mobility shift scanning using an automated infrared DNA sequencer.
Electrophoretic mobility shift assay (EMSA) is widely used in the study of sequence-specific DNA-binding proteins, including transcription factors and mismatch binding proteins. We have established a non-radioisotope-based protocol for EMSA that features an automated DNA sequencer with an infrared fluorescent dye (IRDye) detection unit. Our modification of the elec- trophoresis unit, which incl...
متن کاملDesign of a fluorescent electrophoretic mobility shift assay improved for the quantitative and multiple analysis of protein-DNA complexes.
We describe a protocol for the fluorescent electrophoretic mobility shift assay improved for the quantitative analysis of protein-DNA complexes. Fluorescent-labeled oligonucleotide probes incubated with nuclear proteins were followed by electrophoresis. The signals for protein-DNA complexes were measured and normalized with fluorescent-labeled marker using fragment analysis software. This assay...
متن کاملThe influence of fluorescent dye structure on the electrophoretic mobility of end-labeled DNA.
Over the past 10 years, fluorescent end-labeling of DNA fragments has evolved into the preferred method of DNA detection for a wide variety of applications, including DNA sequencing and PCR fragment analysis. One of the advantages inherent in fluorescent detection methods is the ability to perform multi-color analyses. Unfortunately, labeling DNA fragments with different fluorescent tags genera...
متن کاملQuantitative approaches to monitor protein-nucleic acid interactions using fluorescent probes.
Sequence-specific recognition of nucleic acids by proteins is required for nearly every aspect of gene expression. Quantitative binding experiments are a useful tool to measure the ability of a protein to distinguish between multiple sequences. Here, we describe the use of fluorophore-labeled oligonucleotide probes to quantitatively monitor protein/nucleic acid interactions. We review two compl...
متن کاملFast and reliable screening of mutations in human tumors: use of multiple fluorescence-based long linker arm nucleotides assay (mf-LLA).
Human tumor samples were screened for point mutations by adapting a mobility-shift assay to automated DNA sizing. This screen identifies the type of point mutation and relative amount of mutated DNA sequences present in a sample. Test samples having known hypoxanthine-guanine phosphoribosyl transferase (hprt)/exon-3 sequence mutations were characterized by: (i) PCR amplification, (ii) fluoresce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of visualized experiments : JoVE
دوره 117 شماره
صفحات -
تاریخ انتشار 2016